RFF: A Robust, FF-Based MDP Planning Algorithm for Generating Policies with
Low Probability of Failure

Florent Teichteil-Konigsbuch and Guillaume Infantes

ONERA-DCSD
2 Avenue Edouard-Belin — BP 74025
31055 Toulouse Cedex 4
France

Introduction

Over the years, researchers have developed many efficient
techniques, such as the planners FF (Hoffmann and Nebel
2001), LPG (Gerevini, Saetti, and Serina 2003), SATPLAN
(Kautz, Selman, and Hoffmann 2006), SGPLAN (Hsu et
al. 2006), and others, for planning in classical (i.e., de-
terministic) domains. Some of these planning techniques
have been adapted for planning under uncertainty and pro-
vide some impressive performance results. For example, the
FF-REPLAN (Yoon, Fern, and Givan 2007) is a reactive on-
line planning algorithm that has been demonstrated to be
very effective for many MDP planning problems. As another
example, planning-graph techniques inspired by FF has also
been generalized to planning under nondeterminism and
partial observability (Hoffmann and Brafman 2005; Bryce,
Kambhampati, and Smith 2006). Finally, the conformant-
planning approach of (Palacios and Geftner 2006; 2007) de-
scribes how to translate any conformant planning problem
into a classical problem for a classical planner. Their ap-
proach generates a single translation, and can only find con-
formant solutions.

In this paper, we describe our work that investigates a
somewhat middle-ground between the previous approaches
described above. In particular, we present an MDP planning
algorithm, called RFF, for generating offline robust policies
in probabilistic domains. Like both of the above approaches,
RFF first creates a relaxation of an MDP planning prob-
lem by translating it into a deterministic planning problem in
which each action corresponds to an effect of a probabilistic
action in the original MDP and for every such effect in the
original MDP there is a deterministic action, and there are
no probabilities, costs, and rewards. In this relaxed planning
problem, RFF computes a policy by generating successive
execution paths leading to the goal from the initial states by
using FF. The policy returned by RFF has a low probability
of failing. In our approach, we interpret this not as the prob-
ability of reaching a goal but as the probability of causing
any replanning during execution.

In this work, we use a Monte-Carlo simulation in order
to compute the probability that a partial policy would fail
during execution (i.e., the probability that the execution of

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ugur Kuter
University of Maryland
Department of Computer Science
College Park, MD 20742
USA

the policy will end in a state for which the policy does not
specify any action). Based on this probability, RFF decides
whether to expand the policy further, or return it as a solution
for the input MDP.

Similar to FF-REPLAN, which was the winner of the
International Probabilistic Planning Competition in 2004,
RFF is a replanning algorithm for MDPs. FF-REPLAN is
an on-line probabilistic planner which computes a sequence
of actions from a given state. This sequence of actions is
a plan, i.e. a list of (state, action) pairs which indicates
the action to perform in each successive state in order to
reach the goal. Since actions’ effects are probabilistic, the
sequence of actions is not guaranteed to succeed: each time
the plan’s execution leads to a state which is not in the plan,
FF-REPLAN has to recompute a new plan from scratch in
the current state.

Unlike FF-REPLAN, however, RFF generates offline poli-
cies that have some guarantees for not failing; if a fail-
ure still occurs during execution, then RFF updates its pre-
vious policy to circumvent the failure. It is similar to
CONTINGENT-FF mentioned above in its way to use FF to
generate offline policies using relaxations of the planning
problems.

Another difference between FF-REPLAN and RFF is that
the latter one does not compute the same plan over and over
again, if an undesirable action outcome occurs in which a
plan was already computed in the past (in the current execu-
tion or in previous executions).

Like FF-REPLAN, RFF is not guaranteed to generate op-
timal solutions to MDP planning problems and does not cur-
rently handle the dead-end states. In our experiments, RFF
generated optimal solutions in some cases and near-optimal
solutions in most. In our discussions below, we also describe
some exploratory ideas on dealing with these issues.

The RFF Algorithm

The main idea behind RFF is to generate an initial path from
the initial state to some goal state by using the classical plan-
ner FF (Hoffmann and Nebel 2001) on a relaxation of the
MDP. Since this path is deterministic, its execution can fail
with a high probability in the sense that the execution of this
path can lead to a state for which the path does not specify
any actions. We call such states failure states because they
represent states where the deterministic plan failed. In each

failure state, we compute a new path to the some goal state
by using again FF from this failure state. Then, we look for
new failure states from which we compute new determinis-
tic paths, and so on. We stop as soon as the probability to
reach some failure state from the initial state is less than a
given threshold. As a result, RFF produces a robust policy
to goal states with a controlled failure probability.

The RFF planner used in the competition is based on a
graph implementation defined as:

e a graph is a mapping from PPDDL states to nodes ;
e a PPDDL state is a set of true predicates ;

e a node is a tuple containing the current best action and
best value in this state, as well as a mapping from applica-
ble actions in this state to a list of all stochastic outcomes
(edges) for each action ;

e an edge (outcome) is a tuple containing the probability,
the reward, and the next state of the outcome.

A node in G is a terminal node if it does not have any out-
going edges.

RFF’s pseudo-code is shown in Algorithm 1. In lines 1
to 2, RFF generates a deterministic relaxation of the input
MDP and the initial policy is the empty policy. This means
that initially, the graph G contains a single state represent-
ing the initial state /. There are several known strategies for
generating a deterministic relaxation of an MDP: see (Yoon,
Fern, and Givan 2007) for a review of some of them. In
this work, we generate a deterministic relaxation by substi-
tuting all stochastic outcomes of an action by the most prob-
able outcome. This strategy is appropriate to our approach
because we seek to minimize path execution failure during
execution due to least probable outcomes.

In lines 3 to 26, RFF computes successive paths from
each failure state, until the probability to reach some fail-
ure state is less than a given threshold p (line 26). In lines
5 and 6, the planner first generates a deterministic problem
whose initial state is the current terminal state s, and then it
invokes FF.

Next RFF generates the state trajectory by successively
applying the original probabilistic versions of the actions
generated by FF in the current terminal state. This pro-
cess also computes new terminal states and RFF keeps them
in the set 7 in Algorithm 1. In lines 9 to 12, RFF adds
the current path generated by FF into the partial policy 7.
Then, RFF computes the set of terminal states of the graph
G (lines 13 — 21). Before going into the next iteration, RFF
also computes the probability to reach a failure state from
the initial state by following the current policy (line 25). As
this computation can be costly, we present in the next section
a sequential Monte-Carlo method we used to statistically as-
sess this probability.

Sequential Monte-Carlo Simulation for
Computing Policy Failure Probabilities

In line 25 of Algorithm 1, we need to compute the proba-
bility to reach some failure states from the initial state by
applying the current policy in the graph. Theoretically, this

Algorithm 1: RFF

// M: the input MDP

// I: initial state

// G = (nodes_map): explored states

// modes-map = state ~ (action, value, edges_-map)

// edges-map = Ar(state) ~ edges_list

// edge = (probability, node)

// T: set of tip nodes

// failure_probability: probability to reach
a terminal state

// 0<p<1l: failure probability
threshold
1 D « generate_deterministic.domain(M);
2 7T «— {I};
3 repeat
4 for s € 7 do
5 P, «— generate_deterministic_problem(s);
6 {(517a1)7"',(81)7a1’)} <_FF(D7,PS)’
7 forl1 <i<pdo
8 if s; & G.nodes or s; € T then
9 G.nodes.add(s;);
10 em «— outcomes(s;);
11 G.nodes(s;).insert(em);
12 T .remove(s;);
13 for a € applicable(s) do
14 em «— G.nodes(s;).edges-map(a);
15 for e € em do
16 if e.state € G.nodes then
17 G.nodes.add(e.state,nil);
18 T .add(e.state);
19 end
20 end
21 end
22 end
23 end
24 end
25 failure_probability — compute_failure(I,G);
26 until failure_probability < p;

probability can be iteratively assessed by computing the suc-
cessive probabilities P;(7 | s) of reaching some terminal
states in 7 from a state s in ¢ steps:

o Py(T |s)=067(s)
o PT [s) =X gec.cagesis) P(8" | 8,m(s))Piea(T | §')

The probability to reach some terminal states from the initial
state [is then: limy_, 4 o P:(7 | I).

Nevertheless, this computation may be quite costly, so
that we assess this probability by means of sequential
Monte-Carlo simulation instead. The principle is very sim-
ple and quite efficient: it consists in simulating N trajec-
tories which all start from the initial state, and which end
each as soon as a terminal state is reached or after a given
depth. The probability to reach some terminal state is ap-
proximately the ratio between the number of trajectories
which reach a terminal state and N. The sequential Monte-
Carlo simulation, performed by the compute_failure sub-
routine in Algorithm 2, computes the probability to reach
terminal states. In line 7, a sampled outcome of a state s by

applying the current policy in s, is obtained by sampling the
outcomes of s in the graph G.

Algorithm 2: compute_failure function

Input: / // initial state
G // set of goal states
T // set of terminal states
G // explored states graph
N // number of simulations
depth // maximum depth of simulated
trajectories
Output: ¢ // probability to reach a
terminal state (failure probability)
p—0;
forl1 <i< Ndo
s« I
cnt «— 0;
repeat
cnt <+ cnt + 1,
s < sample_outcome(s, G);
if s € 7 then
| et
end
until cnt < depthand s € Gand s € T ;

(RN N7 R RN

—
>

-
-

end

[
[S)

Choosing the Goal States for FF

Different strategies can be applied to compute paths from
failure states depending on the deterministic problem given
to FF. In the previous subsection, we implicitly presented
the strategy which consists in computing a path from a
given failure state to the goal states. We name it RFF-PG
(RFF-PROBLEMGOALS) for “reach goals of the probabilis-
tic problem”.

Although this strategy’s implementation is very simple, it
often results in computing several times the same subpaths.
Let us assume FF computes a path {(s1,a1),- -, (Sp,ap)}
after having already computed a lot of paths. It is quite
probable there exists 1 < k < p where the subpath
{(sksak), -, (sp,ap)} was already computed in previous
paths’ computations.

To avoid this drawback, we also developed two other
strategies. In both of them, when RFF generates a determin-
istic problem for FF, the goals of that problem is a subset of
states for which the policy is already computed. In this case,
one expects FF to reach neighbor states for which the policy
is available, instead of trying to reach perhaps far goal states.
The two strategies differ in how the set of goal states for FF
is generated, as described below.

In the first strategy for choosing goals for FF, we ran-
domly choose k states from the policy graph and give them
as goals to FF. The second strategy is a selection of the
best k states from the policy graph where the states are
ranked according to some criterion. For the competition,
we optimize a local shortest stochastic path problem re-
stricted to the policy graph, by assuming all terminal states
are dead-end states. We refer to the first strategy as RFF-RG

(RFF-RANDOMGOALS), and to the second one as RFF-BG
(RFF-BESTGOALS).

Discussion and Ongoing Work

RFF is not optimal because it does not optimize the accu-
mulated rewards, known as the value function in Markov
Decision Processes (Puterman 1994). The value function in
the initial state is the average value of accumulated rewards
along all trajectories which start from the initial state.

We can sub-optimize the value function by computing de-
terministic paths along which the reward fluent is optimized.
The average accumulated rewards won’t most probably be
optimal, but its value may be greater than the value of paths
generated with plain FF. Optimized deterministic paths can
be computed with METRIC-FF (Hoffmann 2003).

Acknowledgments. This research was supported in part
by the French Délégation générale pour I’armement grant
07.60.031.00.470.75.01., DARPA’s Transfer Learning and
Integrated Learning programs, and NSF grant 11S0412812.
The opinions in this paper are those of the authors and do
not necessarily reflect the opinions of the funders.

References

Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning Graph Heuristics for Belief Space Search. Journal of
Artificial Intelligence Research 26:35-99.

Gerevini, A.; Saetti, A.; and Serina, I. 2003. Plan-
ning through Stochastic Local Search and Temporal Action
Graphs. JAIR 20:239-290.

Hoffmann, J., and Brafman, R. 2005. Contingent Planning
via Heuristic Forward Search with Implicit Belief States.
In ICAPS-05.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253-302.

Hoffmann, J. 2003. The metric-FF planning system: Trans-
lating ignoring delete lists to numerical state variables.
Journal of Artificial Intelligence Research 20.

Hsu, C. W.; Wah, B. W.; Huang, R.; and Chen, Y. X. 2006.
New Features in SGPlan for Handling Soft Constraints and
Goal Preferences in PDDL3.0.

Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as Satisfiability.

Palacios, H., and Geffner, H. 2006. Compiling Uncer-
tainty Away: Solving Conformant Planning Problems Us-
ing a Classical Planner (Sometimes). In AAAL

Palacios, H., and Geffner, H. 2007. From Conformant
into Classical Planning: Efficient Translations that may be
Complete Too. In ICAPS-07.

Puterman, M. L. 1994. Markov Decision Processes. John
Wiley & Sons, INC.

Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A
baseline for probabilistic planning. In In proceedings of
the 17th International Conference on Automated Planning
and Scheduling.

